Câu 24 trang 227 SGK Đại số và Giải tích 11 Nâng caoCho hyperbol (H) xác định bởi phương trình
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho hyperbol (H) xác định bởi phương trình \(y = {1 \over x}\) LG a Tìm phương trình tiếp tuyến (T) của (H) tại tiếp điểm A có hoành độ a (với a ≠ 0)Lời giải chi tiết: LG b Giả sử (T) cắt trục Ox tại điểm I và cắt trục Oy tại điểm J. Chứng minh rằng A là trung điểm của đoạn thẳng IJ. Từ đó suy ra cách vẽ tiếp tuyến (T).Lời giải chi tiết: Tìm các giao điểm của (T) với hai trục tọa độ: Cho x=0 thì \(y={2 \over a}\). Cho y=0 thì x=2a. Do đó \(I\left( {2a;0} \right);\,J\left( {0;{2 \over a}} \right)\) Ta thấy:\[\left\{ \begin{array}{l} LG c Chứng minh rằng diện tích tam giác OIJ không phụ thuộc vào vị trí của điểm A.Lời giải chi tiết: Ta có: \[OI = \left| {2a} \right|,OJ = \left| {\frac{2}{a}} \right|\] Diện tích tam giác OIJ là : \(S = {1 \over 2}OI.OJ= {1 \over 2}\left| {2a.{2 \over a}} \right| = 2\) (đvdt) Vì S không phụ thuộc vào a nên diện tích tam giác OIJ không phụ thuộc vào vị trí của điểm A ϵ (H)ufa999.cc
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |