ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Câu 23 trang 111 SGK Hình học 11 Nâng cao

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. a. Chứng minh rằng AC’ vuông góc với hai mặt phẳng (A’BD) và (B’CD’). b. Cắt hình lập phương bởi mặt phẳng trung trực của AC’. Chứng minh thiết diện tạo thành là một lục giác đều. Tính diện tích thiết diện đó.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. a. Chứng minh rằng AC’ vuông góc với hai mặt phẳng (A’BD) và (B’CD’). b. Cắt hình lập phương bởi mặt phẳng trung trực của AC’. Chứng minh thiết diện tạo thành là một lục giác đều. Tính diện tích thiết diện đó.

Lời giải chi tiết

Cách khác:

Ta có: \(BD \bot AC\) (do \(ABCD\) là hình vuông)\(BD \bot AA'\) (do \(AA' \bot \left( {ABCD} \right)\))\( \Rightarrow BD \bot \left( {ACC'A'} \right)\) \( \Rightarrow BD \bot AC'\)\(\left\{ \begin{array}{l}A'D \bot AD'\\A'D \bot AB\end{array} \right. \Rightarrow A'D \bot \left( {ABC'D'} \right)\)\( \Rightarrow A'D \bot AC'\)Ta có: \(\left\{ \begin{array}{l}BD \bot AC'\\A'D \bot AC'\end{array} \right.\) \( \Rightarrow AC' \bot \left( {A'BD} \right)\)Lại có, \(\left\{ \begin{array}{l}BD//B'D'\\A'B//CD'\\BD,A'B \subset \left( {A'BD} \right)\\B'D',CD' \subset \left( {CB'D'} \right)\end{array} \right.\) \( \Rightarrow \left( {A'BD} \right)//\left( {CB'D'} \right)\)\( \Rightarrow AC' \bot \left( {CB'D'} \right)\)Vậy \(AC'\) vuông góc với các mặt phẳng \(\left( {A'BD} \right)\) và \(\left( {CB'D'} \right)\).b) 

Gọi \(O\) là trung điểm của \(AC'\).\(\left( P \right)\) là mặt phẳng trung trực của \(AC'\) thì \(\left( P \right)\) đi qua \(O\) và vuông góc với \(AC'\).Mà \(AC'//\left( {A'BD} \right)\) và \(AC' \bot \left( {CB'D'} \right)\) nên \(\left( P \right)//\left( {A'BD} \right)//\left( {CB'D'} \right)\).
Ta có: \(\left\{ \begin{array}{l}BD \subset \left( {BDD'B'} \right)\\BD//\left( P \right)\\O \in \left( P \right) \cap \left( {BDD'B'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {BDD'B'} \right) = Ot//BD\)Trong \(\left( {BDD'B'} \right)\), qua \(O\) kẻ đường thẳng \(Ot//BD\) và cắt \(BB',DD'\) lần lượt tại các điểm \(S,P\).Tương tự,\(\left\{ \begin{array}{l}A'D \subset \left( {ADD'A'} \right)\\A'D//\left( P \right)\\P \in \left( P \right) \cap \left( {ADD'A'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {ADD'A'} \right) = PQ//A'D\) với \(Q \in A'D\).\(\left\{ \begin{array}{l}B'D \subset \left( {A'B'C'D'} \right)\\B'D//\left( P \right)\\Q \in \left( P \right) \cap \left( {A'B'C'D'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {A'B'C'D'} \right) = QR//B'D'\) với \(R \in A'B'\).
\(\left\{ \begin{array}{l}CD' \subset \left( {CDD'C'} \right)\\CD'//\left( P \right)\\P \in \left( P \right) \cap \left( {CDD'C'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {CDD'C'} \right) = PN//CD'\) với \(N \in CD\).\(\left\{ \begin{array}{l}BD \subset \left( {ABCD} \right)\\BD//\left( P \right)\\N \in \left( P \right) \cap \left( {ABCD} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {ABCD} \right) = NM//BD\) với \(M \in BC\).Vậy thiết diện là lục giác \(MNPQRS\).Dễ thấy, \(O\) là trung điểm của \(AC'\) nên cũng là trung điểm của \(BD'\).\( \Rightarrow PS//BD\) thì \(P,S\) lần lượt là trung điểm của \(DD',BB'\).Từ đó các điểm \(M,N,Q,R\) lần lượt là trung điểm của \(BC,CD,D'A',A'B'\).\(ABCD\) là hình vuông cạnh \(a\) nên \(BD = \sqrt {A{B^2} + A{D^2}} \) \( = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)\( \Rightarrow MN = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\)Tương tự \(MN = NP = PQ\) \( = QR = RS = SM = \frac{{a\sqrt 2 }}{2}\).Do đó, lục giác \(MNPQRS\) là lục giác đều.Xét \(\Delta MON\) đều cạnh \(OM = ON = MN = \frac{{a\sqrt 2 }}{2}\) nên có diện tích:\({S_{MON}} = \frac{1}{2}OM.ON.\sin \widehat {MON}\) \( = \frac{1}{2}.\frac{{a\sqrt 2 }}{2}.\frac{{a\sqrt 2 }}{2}.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{8}\)Vậy \({S_{MNPQRS}} = 6{S_{MON}}\) \( = 6.\frac{{{a^2}\sqrt 3 }}{8} = \frac{{3{a^2}\sqrt 3 }}{4}\).

ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|🎶{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🤡{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🎐{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|ﷺ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🦄{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🐈{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}| 𓆏{tải app ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số}|𒁏{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press 229}|{đá gà trực tiếp ở thomo campuchia}|{trực tiep thomo}|{đa ga thomo hôm nay}|𒉰{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số yet site}|{ae912}|{chẵn là tài hay xỉu}|𒆙{ae nhà cái ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số}|{venus casino}|