ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Câu 2 trang 100 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Chứng minh rằng với mọi số nguyên dương n, ta luôn có đẳng thức : \({2^2} + {4^2} + ... + {\left( {2n} \right)^2} = {{2n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 3}\)

Lời giải chi tiết

+) Với \(n = 1\) ta có \({2^2} = {{2.2.3} \over 3}\) (đúng).Vậy (1) đúng với \(n = 1\)+) Giả sử (1) đúng với \(n = k\), tức là ta có :  \({2^2} + {4^2} + ... + {\left( {2k} \right)^2} = {{2k\left( {k + 1} \right)\left( {2k + 1} \right)} \over 3}\)+) Ta chứng minh (1) đúng với \(n = k + 1\), tức là phải chứng minh :\({2^2} + {4^2} + ... + {\left( {2k} \right)^2} + {\left( {2k + 2} \right)^2} = {{2\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)} \over 3}\)Thật vậy, từ giả thiết quy nạp ta có :

\(\eqalign{
& {2^2} + {4^2} + ... + {\left( {2k} \right)^2} + {\left( {2k + 2} \right)^2} \cr 
& = {{2k\left( {k + 1} \right)\left( {2k + 1} \right)} \over 3} + {\left( {2k + 2} \right)^2} \cr 
& = \frac{{2\left( {k + 1} \right).k\left( {2k + 1} \right)}}{3} + 4{\left( {k + 1} \right)^2} \cr&= \frac{{2\left( {k + 1} \right)\left( {2{k^2} + k} \right) + 12{{\left( {k + 1} \right)}^2}}}{3}\cr&= {{2\left( {k + 1} \right)\left( {2{k^2}+k+ 6k + 6} \right)} \over 3} \cr 
& = \frac{{2\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{3} \cr&= \frac{{2\left( {k + 1} \right)\left( {2{k^2} + 4k + 3k + 6} \right)}}{3}\cr& = {{2\left( {k + 1} \right)\left[ {2k\left( {k + 2} \right) + 3\left( {k + 2} \right)} \right]} \over 3} \cr 
🔜& = {{2\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)} \over 3} \cr} \)

Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi \(n \in\mathbb N^*\)

 ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|🍬{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🥃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🌜{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🎀{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🌞{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🍰{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}| 💧{tải app ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số}|🎀{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press 229}|{đá gà trực tiếp ở thomo campuchia}|{trực tiep thomo}|{đa ga thomo hôm nay}|🔯{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số yet site}|{ae912}|{chẵn là tài hay xỉu}|ꦺ{ae nhà cái ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số}|{venus casino}|