ftw bet

Câu 19 trang 19 SGK Hình học 11 Nâng cao

Trong mặt phẳng tọa độ
Quảng cáo

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :ax + by + c = 0\) và điểm \(I\left( {{x_0};{y_o}} \right)\). Phép đối xứng tâm \({D_I}\) biến đường thẳng \(△\) thành đường thẳng \(△’\). Viết phương trình của \(△’\)

Lời giải chi tiết

Giả sử \(M (x , y) \in △\) và \(M’ (x’ , y') \in △’\) và I là trung điểm của MM’ nên:

\(\left\{ \begin{array}{l}
{x_0} = \frac{{x + x'}}{2}\\
{y_0} = \frac{{y + y'}}{2}
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x + x' = 2{x_0}\\
y + y' = 2{y_0}
\end{array} \right.\)

\(\Rightarrow \left\{ {\matrix{{x = 2{x_0} - x'} \cr {y = 2{y_0} - y'} \cr} } \right.\)\(M(x , y) ∈△\) nên

\(\begin{array}{l}
a\left( {2{x_0} - x'} \right) + b\left( {2{y_0} - y'} \right) + c = 0\\
\Leftrightarrow 2a{x_0} - ax' + 2b{y_0} - by' + c = 0\\
\Leftrightarrow 2a{x_0} + 2b{y_0} + c = ax' + by'\\
\Leftrightarrow ax' + by' - \left( {2a{x_0} + 2b{y_0} + c} \right) = 0
\end{array}\)

Vậy M’ nằm trên đường thẳng ảnh \(△’\) có phương trình:\(ax + by - \left( {2a{x_0} + 2b{y_0} + c} \right) = 0\)

ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|