Câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng caoChứng minh rằng
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Chứng minh rằng dãy số \(\displaystyle (u_n)\) với \(\displaystyle {u_n} = {{2n + 3} \over {3n + 2}}\) là một dãy số giảm và bị chặn.Phương pháp giải - Xem chi tiết
- Xét hiệu \(H = {u_{n + 1}} - {u_n}\), chứng minh \(H<0\).
- Đánh giá \(u_{n}\) bị chặn dưới và bị chặn trên, tức là chỉ ra tồn tại các số thực \(m,M\) sao cho \(m \le {u_n} \le M\).
Lời giải chi tiết Ta có:\(\displaystyle \eqalign{ \(\begin{array}{l} Cách khác: \(\begin{array}{l} ufa999.cc
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |