Câu 12 trang 225 SGK Đại số và Giải tích 11 Nâng caoCho dãy số (un) xác định bởi
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho dãy số (un) xác định bởi \({u_1} = 3\,\text{ và }\,{u_n} = 4{u_{n - 1}} - 1\) với mọi n ≥ 2 Chứng minh rằng :LG a \({u_n} = {{{2^{2n + 1}} + 1} \over 3}\) (1) với mọi số nguyên n ≥ 1Lời giải chi tiết: Với n = 1 ta có \({u_1} = 3 = {{{2^3} + 1} \over 3}\) (1) đúng với n = 1 Giả sử (1) đúng với n = k tức là ta có : \({u_k} = {{{2^{2k + 1}} + 1} \over 3}\) Ta chứng minh (1) đúng khi n=k+1 hay \({u_{k + 1}} = \dfrac{{{2^{2\left( {k + 1} \right) + 1}} + 1}}{3}\) Với n = k + 1 ta có : \(\eqalign{ & {u_{k + 1}} = 4{u_k} - 1 = 4.{{{2^{2k + 1}} + 1} \over 3} - 1 \cr &= {{4\left( {{2^{2k + 1}} + 1} \right) - 3} \over 3} \cr & = {{{2^{2k + 3}} + 1} \over 3} = {{{2^{2\left( {k + 1} \right)+1}} + 1} \over 3} \cr} \) Vậy (1) đúng với n = k + 1 do đó (1) đúng với ∀ n ≥ 1LG b (un) là môt dãy số tăng. Lời giải chi tiết: Ta có: \(\eqalign{ & {u_{n + 1}} - {u_n} = {{{2^{2n + 3}} + 1} \over 3} - {{{2^{2n + 1}} + 1} \over 3} = {{{2^{2n + 1}}\left( {{2^2} - 1} \right)} \over 3} \cr & = {2^{2n + 1}} > 0 \Rightarrow {u_{n + 1}} > {u_n} \cr} \)⇒ (un) là dãy số tăng. ufa999.cc
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |