ftw bet

Bài tập 13 trang 39 Tài liệu dạy – học Toán 7 tập 1

Giải bài tập Chứng minh từ tỉ thức
Quảng cáo

Đề bài

Chứng minh từ tỉ thức \({a \over b} = {c \over d}\) thì ta suy ra được các tỉ thức sau: \({{a + b} \over b} = {{c + d} \over d};\,\,\,{{a - b} \over b} = {{c - d} \over d}\) và \({a \over {a + b}} = {c \over {c + d}}\) (với \(a + b \ne 0,\,\,c + d \ne 0\) )

Lời giải chi tiết

Chứng minh \({a \over b} = {c \over d} \Rightarrow {{a + b} \over b} = {{c + d} \over d}\)Cách 1:Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over b} + {b \over b} = {c \over d} + {d \over d} \Rightarrow {{a + b} \over b} = {{c + d} \over d}\)Cách 2:Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over c} = {b \over d} \Rightarrow {{a + b} \over {c + d}} = {b \over d} \Rightarrow {{a + b} \over b} = {{c + d} \over d}\)Chứng minh: \({a \over b} = {c \over d} \Rightarrow {{a - b} \over b} = {{c - d} \over d}\)Cách 1:Ta có:\({a \over b} = {c \over d} \Rightarrow {a \over b} - {b \over b} = {c \over d} - {d \over d} \Rightarrow {{a - b} \over b} = {{c - d} \over d}\)Cách 2:Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over c} = {b \over d} \Rightarrow {{a - b} \over {c - d}} = {b \over d} \Rightarrow {{a - b} \over b} = {{c - d} \over d}\)Chứng minh \({a \over b} = {c \over d} \Rightarrow {a \over {a + b}} = {c \over {c + d}}\)  (với \(a + b \ne 0,c + d \ne 0)\)Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over c} = {b \over d} \Rightarrow {a \over c} = {{a + b} \over {c + d}} \Rightarrow {a \over {a + b}} = {c \over {c + d}}\)

ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|