ftw bet

Bài 8 trang 169 Tài liệu dạy – học Toán 7 tập 1

Giải bài tập Cho tam giác DEF cân tại D. Gọi H là trung điểm của EF.
Quảng cáo

Đề bài

Cho tam giác DEF cân tại D. Gọi H là trung điểm của EF. a) Chứng minh rằng DH là phân giác của \(\widehat {EDF}.\) b) Từ E kẻ đường thẳng d song song với DF, d cắt đường thẳng DH tại K. Chứng minh rằng tam giác DEK cân.

Lời giải chi tiết

 

a)Xét tam giác DEH và DFH ta có:DH là cạnh chung.DE = DF (tam giác DEF cân tại D)HE = HF (H là trung điểm của EF)Do đó: \(\eqalign{  & \Delta DEH = \Delta DFH(c.c.c)  \cr  &  \Rightarrow \widehat {EDH} = \widehat {FDH} \cr} \)Vậy DH là tia phân giác của góc EDF.b) Ta có: \(\widehat {EKD} = \widehat {FDH}\)   (so le trong và EK // DF)Mà \(\widehat {EDK} = \widehat {FDH}(cmt)\)Do đó: \(\widehat {EKD} = \widehat {EDK}\)Vậy tam giác DEK cân tại E.\)AB = \sqrt {11} \)

ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|