Bài 4.11 trang 100 SGK Toán 11 tập 1 - Cùng khám pháCho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi M, N lần lượt là trọng tâm của các tam giác SAB, SAD. Lấy I là trung điểm của đoạn BC.Quảng cáo
Đề bài Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi M, N lần lượt là trọng tâm của các tam giác SAB, SAD. Lấy I là trung điểm của đoạn BC. a) Chứng minh rằng MN // BD. b) Gọi L, H lần lượt là giao điểm của SB, SD với mặt phẳng (MNI). Chứng minh rằng LH // BD.Phương pháp giải - Xem chi tiết
a) Áp dụng định lý: Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
b) - Cách tìm giao điểm của một đường thẳng a với một mặt phẳng (P):
+ Bước 1: Tìm \(\left( Q \right) \supset a\). Tìm \(d = \left( P \right) \cap \left( Q \right)\)
+ Bước 2: Tìm \(I = a \cap d\). I chính là giao điểm của a và (P).
- Áp dụng hệ quả: Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |