Bài 4 trang 77 SGK Toán 11 tập 1 - Cánh DiềuXét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó: a) \(f\left( x \right) = {x^2} + \sin x;\) b) \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}};\) c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}.\)
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó: a) \(f\left( x \right) = {x^2} + \sin x;\) b) \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}};\) c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}.\)Phương pháp giải - Xem chi tiết
- Các hàm đa thức, hàm số lượng giác \(y = \sin x,y = \cos x\) liên tục trên \(\mathbb{R}\)
- Các hàm phân thức hữu tỉ liên tục trên từng khoảng xác định của chúng
- Định lí tính liên tục của tổng của hai hàm số liên tục: Giả sử hai hàm số \(y = f(x)\) và \(y = g(x)\) liên tục tại điểm \({x_0}\). Khi đó các hàm số \(y = f(x) \pm g(x)\)và \(y = f(x).g(x)\) liên tục tại điểm \({x_0}\).
Lời giải chi tiết a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).Hàm số x2 và sinx🅠 liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\). b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác địnhHàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)Hàm số \(\frac{{2x}}{{x - 3}}\) liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)Hàm \(\frac{{x - 1}}{{x + 4}}\) liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |