ftw bet

Bài 2.16 trang 56 SGK Toán 11 tập 1 - Cùng khám phá

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_n} = \frac{{3n - 1}}{{n + 2}}\)
Quảng cáo

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_n} = \frac{{3n - 1}}{{n + 2}}\) a) Viết năm số hạng đầu tiên của dãy số. b) Chứng minh rằng dãy \(\left( {{u_n}} \right)\) tăng và bị chặn.

Phương pháp giải - Xem chi tiết

a) Thay \(n = 1,2,3,4,5\) vào công thức tổng quát. b) Nếu \({u_{n + 1}} > {u_n}\forall n \in {\mathbb{N}^*}\) thì là dãy số tăng. Dãy số tăng và bị chặn trên \(\left( {{u_n} \le M\forall n} \right)\) là dãy số bị chặn.

Lời giải chi tiết

a) \({u_1} = \frac{{3.1 - 1}}{{1 + 2}} = \frac{2}{3};{u_2} = \frac{{3.2 - 1}}{{2 + 2}} = \frac{5}{4};{u_3} = \frac{{3.3 - 1}}{{3 + 2}} = \frac{8}{5};{u_4} = \frac{{3.4 - 1}}{{4 + 2}} = \frac{{11}}{6};{u_5} = \frac{{3.5 - 1}}{{5 + 2}} = 2\).b) Ta có:\(\begin{array}{l}{u_n} = \frac{{3n - 1}}{{n + 2}} = 3 - \frac{7}{{n + 2}}\\ \Rightarrow {u_{n + 1}} - {u_n} = 3 - \frac{7}{{n + 3}} - 3 + \frac{7}{{n + 2}} = 7\left( {\frac{1}{{n + 2}} - \frac{1}{{n + 3}}} \right) > 0\\ \Rightarrow {u_{n + 1}} > {u_n}\end{array}\)Vậy dãy số đã cho là dãy số tăng.Ta có: \(n \in {\mathbb{N}^*} \Rightarrow n + 2 > 0 \Rightarrow \frac{7}{{n + 2}} > 0 \Rightarrow 3 - \frac{7}{{n + 2}} < 3 \Rightarrow {u_n} < 3\)Dãy số vừa là dãy tăng vừa bị chặn trên thì bị chặn.

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|