ftw bet

Bài 2 trang 47 SGK Toán 11 tập 2 - Cánh Diều

Tìm tập xác định của các hàm số:

💜Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo

Đề bài

Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao? a)     \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\) b)    \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\) c)     \(y = {\log _\pi }x\)

Phương pháp giải - Xem chi tiết

ꦚDựa vào hệ số của hàm để xác định hàm đồng biến, nghịch biến

Lời giải chi tiết

a)     Do \(0 < \frac{{\sqrt 3 }}{2} < 1\) => Hàm số \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\) nghịch biến trên tập xác định của hàm sốb)    Do \(0 < \frac{{\sqrt[3]{{26}}}}{3} < 1\) => Hàm số \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\) nghịch biến trên tập xác định của hàm sốc)     Do \(\pi  > 1\) => Hàm số \(y = {\log _\pi }x\) đồng biến trên tập xác định của hàm sốd)    Do \(0 < \frac{{\sqrt {15} }}{4} < 1\) => Hàm số \(y = {\log _{\frac{{\sqrt {15} }}{4}}}x\) nghịch biến trên tập xác định của hàm số

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|